Package 'gumbel'

Title: The Gumbel-Hougaard Copula
Description: Provides probability functions (cumulative distribution and density functions), simulation function (Gumbel copula multivariate simulation) and estimation functions (Maximum Likelihood Estimation, Inference For Margins, Moment Based Estimation and Canonical Maximum Likelihood).
Authors: Christophe Dutang [aut, cre] , Anne-Lise Caillat [ctb], Veronique Larrieu [ctb], Triet Nguyen [ctb]
Maintainer: Christophe Dutang <[email protected]>
License: GPL (>= 2)
Version: 1.10-3
Built: 2024-11-17 05:10:29 UTC
Source: https://github.com/cran/gumbel

Help Index


The Gumbel Hougaard Copula

Description

Density function, distribution function, random generation, generator and inverse generator function for the Gumbel Copula with parameters alpha. The 4 classic estimation methods for copulas.

Usage

dgumbel(u, v=NULL, alpha, dim=2, warning = FALSE)
pgumbel(u, v=NULL, alpha, dim=2)
rgumbel(n, alpha, dim=2, method=1)
phigumbel(t, alpha=1)
invphigumbel(t, alpha=1)
gumbel.MBE(x, y, marg = "exp")
gumbel.EML(x, y, marg = "exp")
gumbel.IFM(x, y, marg = "exp")
gumbel.CML(x, y)

Arguments

u

vector of quantiles if argument v is provided or matrix of quantiles if argument v is not provided

v

vector of quantiles, needed if u is not a matrix

n

number of observations. If length(n) > 1, the length is taken to be the number required.

alpha

parameter of the Copula. Must be greater than 11.

dim

an integer specifying the dimension of the copula.

t

dummy variable of the generator ϕ\phi or the inverse generator ϕ1\phi^-1. could be a n-dimensional array.

method

an integer code for the method used in simulation. 1 is the common frailty approach, 2 uses the K function (only valid with dim=2).

x, y

vectors of observations, realizations of random variable XX and YY.

marg

a character string specifying the marginals of vector (X,Y)(X,Y). It must be either "exp"(default value) or "gamma".

warning

a logical (default value FALSE) if you want warnings.

Details

The Gumbel Hougaard Copula with parameter alpha is defined by its generator

ϕ(t)=(ln(t))alpha.\phi(t) = (-ln(t))^alpha.

The generator and inverse generator are implemented in phigumbel and invphigumbel respectively. As an Archimedean copula, its distribution function is

C(u1,...,un)=ϕ1(ϕ(u1)+...+ϕ(un))=exp(((ln(u1))alpha+...+(ln(un))alpha)1/α).C(u_1, ...,u_n) = \phi^{-1}(\phi(u_1)+...+\phi(u_n)) = exp(-( (-ln(u_1))^alpha+...+(-ln(u_n))^alpha )^1/\alpha).

pgumbel and dgumbel computes the distribution function (expression above) and the density (nn times differentiation of expression above with respect to uiu_i). As there is no explicit formulas for the density of a Gumbel copula, dgumbel is not yet impemented for argument dim>3. This two functions works with a dim-dimensional array with the last dimension being equalled to dim or with a matrix with dim columns (see examples).

Random generation is carried out with 2 algorithms the common frailty algorithm (method=1) and the 'K' algorithm (method=2). The common frailty algorithm (cf. Marshall & Olkin(1988)) can be sum up in three lines

  • generate y1y_1, y2y_2 from exponential distribution of mean 1,

  • generate θ\theta from a stable distribution with parameter(1/alpha,1,1,0)(1/alpha,1,1,0),

  • u1<phi(y1/θ)u_1 <- phi(y_1/\theta) and u2<phi(y2/θ)u_2 <- phi(y_2/\theta).

This algorithm works with any dimension. See Chambers et al(1976) for stable random generation. The 'K' algorithm use the fact the distribution function of random variable C(U,V)C(U,V) is K(t)=tϕ(y)/ϕ(t)K(t) = t-\phi(y)/\phi'(t). The algorithm is

  • generate v1v_1, tt from uniform distribution,

  • generate v2v_2 from the KK distribution i.e. v2<K1(t)v_2<-K^{-1}(t),

  • u1<ϕ1(ϕ(v1)v2)u_1<-\phi^{-1}(\phi(v_1)v_2) and u2<ϕ1(ϕ(v1)(1v2))u_2<-\phi^{-1}(\phi(v_1)(1-v_2)).

Warning, the 'K' algorithm does NOT work with dim>2.

We implements the 4 usual method of estimation for copulas, namely the Exact Maximum Likelihood (gumbel.EML), the Inference for Margins (gumbel.IFM), the Moment-base Estimation (gumbel.MBE) and the Canonical Maximum Likelihood (gumbel.CML). For the moment, only two types of marginals are available : exponential distribution (marg="exp") and gamma distribution (marg="gamma").

Value

dgumbel gives the density, pgumbel gives the distribution function, rgumbel generates random deviates, phigumbel gives the generator, invphigumbel gives the inverse generator.

gumbel.EML, gumbel.IFM, gumbel.MBE and gumbel.CML returns the vector of estimates.

Invalid arguments will result in return value NaN.

Author(s)

A.-L. Caillat, C. Dutang, M. V. Larrieu and T. Nguyen

References

Nelsen, R. (2006), An Introduction to Copula, Second Edition, Springer.

Marshall & Olkin(1988), Families of multivariate distributions, Journal of the American Statistical Association.

Chambers et al (1976), A method for simulating stable random variables, Journal of the American Statistical Association.

Nelsen, R. (2005), Dependence Modeling with Archimedean Copulas, booklet available at www.lclark.edu/~mathsci/brazil2.pdf.

Examples

#dim=2
	u<-seq(0,1, .1)
	v<-u
	#classic parametrization
	#independance case (alpha=1)
	dgumbel(u,v,1)
	pgumbel(u,v,1)
	#another parametrization
	dgumbel(cbind(u,v), alpha=1)
	pgumbel(cbind(u,v), alpha=1)

	#dim=3 - equivalent parametrization
	x <- cbind(u,u,u)
	y <- array(u, c(1,11,3))
	pgumbel(x, alpha=2, dim=3)
	pgumbel(y, alpha=2, dim=3)
	dgumbel(x, alpha=2, dim=3)
	dgumbel(y, alpha=2, dim=3)

	#dim=4
	x <- cbind(x,u)
	pgumbel(x, alpha=3, dim=4)
	y <- array(u, c(2,1,11,4))
	pgumbel(y, alpha=3, dim=4)
	
	
	#independence case
	rand <- t(rgumbel(200,1))
	plot(rand[1,], rand[2,], col="green", main="Gumbel copula")
	
	#positive dependence
	rand <- t(rgumbel(200,2))
	plot(rand[1,], rand[2,], col="red", main="Gumbel copula")
	
	#comparison of random generation algorithms
	nbsimu <- 10000
	#Marshall Olkin algorithm
	system.time(rgumbel(nbsimu, 2, dim=2, method=1))[3]
	#K algortihm
	system.time(rgumbel(nbsimu, 2, dim=2, method=2))[3]
	
	#pseudo animation
	## Not run: 
	anim <-function(n, max=50)
	{
	for(i in seq(1,max,length.out=n)) 
	{
		u <- t(rgumbel(10000, i, method=2))
		plot(u[1,], u[2,], col="green", main="Gumbel copula",
            xlim=c(0,1), ylim=c(0,1), pch=".")
		cat()
	}	
	}
	anim(20, 20)
	
## End(Not run)
	
	#3D plots

	#plot the density
 	x <- seq(.05, .95, length = 30)
	y <- x
	z <- outer(x, y, dgumbel, alpha=2)
		
	persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",
      ltheta = 100, shade = 0.25, ticktype = "detailed",
      xlab = "x", ylab = "y", zlab = "density")
	
	#with wonderful colors
	#code of P. Soutiras
	zlim <- c(0, max(z))
	ncol <- 100
	nrz <- nrow(z)
	ncz <- ncol(z)
	jet.colors <- colorRampPalette(c("#00007F", "blue", "#007FFF", 
	"cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")) 
	couleurs <- tail(jet.colors(1.2*ncol),ncol)
	fcol <- couleurs[trunc(z/zlim[2]*(ncol-1))+1]
	dim(fcol) <- c(nrz,ncz)
	fcol <- fcol[-nrz,-ncz]
	persp(x, y, z, col=fcol, zlim=zlim, theta=30, phi=30, ticktype = "detailed",
        box = TRUE, 	xlab = "x", ylab = "y", zlab = "density")
	

	#plot the distribution function
	z <- outer(x, y, pgumbel, alpha=2)
	persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",
        ltheta = 100, shade = 0.25, ticktype = "detailed",
        xlab = "u", ylab = "v", zlab = "cdf")
	
	

	#parameter estimation
	#true value : lambdaX=lambdaY=1, alpha=2
	simu <- qexp(rgumbel(200, 2))
	gumbel.MBE(simu[,1], simu[,2])
	gumbel.IFM(simu[,1], simu[,2])
	gumbel.EML(simu[,1], simu[,2])
	gumbel.CML(simu[,1], simu[,2])

	#true value : lambdaX=lambdaY=1, alphaX=alphaY=2, alpha=3
	simu <- qgamma(rgumbel(200, 3), 2, 1)
	gumbel.MBE(simu[,1], simu[,2], "gamma")
	gumbel.IFM(simu[,1], simu[,2], "gamma")
	gumbel.EML(simu[,1], simu[,2], "gamma")
	gumbel.CML(simu[,1], simu[,2])

Daily Climatological data between August 2005 and May 2007

Description

Daily Climatological data recorded in two French cities: Echirolles and St Martin-En-Haut. Weather stations are located at Echirolles (ELEV: 237m, LAT: 45 06' 00" N LONG: 5 42' 00" E) and La Rafiliere (ELEV: 575m, LAT: 45 39' 00" N LONG: 4 33' 00" E), respectively.

Usage

data(windStMartin)
data(windEchirolles)

Format

windStMartin and windEchirolles are data frames of 15 columns:

YEAR

Year.

MONTH

Month number.

DAY

Day number.

TEMP.MEAN

Average temperature (Celsius degree).

TEMP.HIGH

Maximum temperature.

TIME.TH

Time of the maximum temperature (hh:mm).

TEMP.LOW

Minimum temperature.

TIME.TL

Time of the minimum temperature.

HDD

Heating Degree Days.

CDD

Cooling Degree Days.

RAIN

Rain (mm).

WIND.MEAN

Wind speed average (km/h).

WIND.HIGH

Wind speed maximum.

WIND.TH

Time of the wind speed maximum.

DOM.DIR

Dominant direction of the wind, a character string where "N" for North, "NE" for North-East, etc...

Source

See https://meteo.data.gouv.fr/datasets