Package 'RTDE'

Title: Robust Tail Dependence Estimation
Description: Robust tail dependence estimation for bivariate models. This package is based on two papers by the authors:'Robust and bias-corrected estimation of the coefficient of tail dependence' and 'Robust and bias-corrected estimation of probabilities of extreme failure sets'. This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
Authors: Christophe Dutang [aut, cre] , Armelle Guillou [ctb] , Yuri Goegebeur [ctb]
Maintainer: Christophe Dutang <[email protected]>
License: GPL (>= 2)
Version: 0.2-2
Built: 2024-11-16 06:05:53 UTC
Source: https://github.com/cran/RTDE

Help Index


Data object used for a Tail Dependence model

Description

Data object used for a Tail Dependence model.

Usage

dataRTDE(obs, simu.nb, simu.marg=c("ufrechet", "upareto"), 
    simu.cop=c("indep", "FGM", "Frank"), simu.cop.par=NULL,
    contamin.eps=NULL, contamin.method=c("NA","max+","+"),
    contamin.marg=c("ufrechet", "upareto"),
    contamin.cop=c("indep", "FGM", "Frank"),
    contamin.cop.par=NULL, control=list())


## S3 method for class 'dataRTDE'
print(x, ...)
## S3 method for class 'dataRTDE'
summary(object, ...)
## S3 method for class 'dataRTDE'
plot(x, which=1:2, ...)

Arguments

obs

bivariate numeric dataset.

simu.nb

a numeric for the sample size of simulated data.

simu.marg

a character string for the marginal distribution: either "ufrechet" (default) or "upareto".

simu.cop

a character string ofr the copula: either "indep" (default), "FGM" or "Frank".

simu.cop.par

a numeric for the copula parameter, default to NULL.

contamin.eps

a numeric for the percentage (of simu.nb) of contaminated data.

contamin.method

a character string for the contamination method: either "NA" (default), "max+" or "+".

contamin.marg

a character string for the marginal distribution: either "ufrechet" (default) or "upareto".

contamin.cop

a character string ofr the copula: either "indep" (default), "FGM" or "Frank".

contamin.cop.par

a numeric for the copula parameter, default to NULL.

control

A list of control paremeters. Unused.

x, object

an R object inheriting from "dataRTDE".

...

arguments to be passed to subsequent methods.

which

an integer (1 or 2) to specify whether to plot in original scale or unit-Pareto scale, respectively.

Details

The function dataRTDE handles empirical or simulated data and may add a contamination.

Empirical data

When obs is provided, dataRTDE just wraps the two-column matrix (Xi,Yi)i(X_i, Y_i)_i.

Simulated data

When simu.XXX are provided, dataRTDE simulates random vectors (Xi,Yi)i(X_i, Y_i)_i from the copula simu.cop with parameter simu.cop.par and marginal simu.marg.

Note that end-user must choose between empirical data (obs is provided) and simulated data (simu.XXX are provided). Not both can be provided. In addition to data handling (Xi,Yi)i(X_i, Y_i)_i, a contamination can be processed by adding new simulated points (X~i,Y~i)i(\tilde X_i, \tilde Y_i)_i when contamin.method != "NA". Those points (X~i,Y~i)i(\tilde X_i, \tilde Y_i)_i are simulated from the copula contamin.cop with parameter contamin.cop.par and marginal contamin.cop.par. If contamin.method != "+", the points (X~i,Y~i)i(\tilde X_i, \tilde Y_i)_i are the contaminations, while if contamin.method != "max+" the contaminations are obtained by adding the component-wise maximum of the data: (X~i+Xn,n,Y~i)i+Yn,n(\tilde X_i + X_{n,n}, \tilde Y_i)_i + Y_{n,n}, where Xn,n=max(X1,...,Xn)X_{n,n}=max(X_1,...,X_n), idem for Yn,nY_{n,n}.

Value

dataRTDE returns an object of class "dataRTDE" having the following components:

n

rownumber of data.

n0

rownumber of contamin.

data

original or simulated data.

contamin

contaminated data.

Author(s)

Christophe Dutang

References

C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

See Also

See fitRTDE for the fitting process and zvalueRTDE for the z-value computation.

Examples

#####
# (1) simulation

n <- 100
x <- dataRTDE(simu.nb=n, simu.marg="ufrechet", simu.cop="indep")
print(x)
summary(x)
plot(x, xlab="x", ylab="y")

#####
# (2) part of the workers' compensation dataset

x1 <- c(
  21.798086,  22.640528,  22.572010,  24.789710,  25.876764,  28.033613,
  22.525887,  12.004031,  12.713178,  13.596610,  14.811727,  12.774073,
  20.245789,  24.242468,  50.216515,  56.099793,  58.109747,  67.807105,
  73.852437,  84.208474,  83.604216,  19.507341,  20.810822,  23.838122,
  24.212193,  25.367578,  35.401344,  37.580989,  12.428727,  13.492474,
  23.471988,  24.101833,  24.766193,  26.078216)

x2 <- c(
 0.538707, 0.439184, 1.059775, 0.560013, 1.004997, 1.097314, 0.609833, 0.270222,
 0.229566, 0.596850, 0.196539, 0.134248, 0.489312, 0.418218, 0.769208, 0.649707,
 0.503919, 0.675466, 0.545745, 1.562266, 0.931762, 0.291125, 0.499927, 0.151084,
 0.141910, 0.300373, 0.119761, 0.141300, 0.377662, 0.169574, 0.243585, 0.061215,
 0.055272, 0.312816, 0.160196, 0.623029, 0.280707, 0.174422, 0.176666, 0.153907,
 0.605122, 0.664457, 0.348918, 0.370878)

obs <- dataRTDE(cbind(x1, x2))
obs
summary(obs)

plot(obs)

The Extended Pareto Distribution

Description

Density function, distribution function, quantile function, random generation.

Usage

dEPD(x, eta, delta, rho, tau, log = FALSE)
pEPD(q, eta, delta, rho, tau, lower.tail=TRUE, log.p = FALSE)
qEPD(p, eta, delta, rho, tau, lower.tail=TRUE, log.p = FALSE,
    control=list())
rEPD(n, eta, delta, rho, tau)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

eta

first shape parameter.

delta

nuisance parameter.

rho, tau

second shape parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

control

A list of control paremeters. See section Details.

Details

The extended Pareto distribution is defined by the following density

f(x)=1ηx1/η1[1+δ(1xτ)]1/η1[1+δ(1(1τ)xτ)]f(x) = \frac{1}{\eta} x^{-1/\eta-1}[1+\delta(1-x^{-\tau})]^{-1/\eta-1}[1+\delta(1-(1-\tau)x^{-\tau})]

for all x>1x>1 when parametrized by τ\tau. However, a typical parametrization is obtained by setting τ=ρ/η\tau=-\rho/\eta, i.e.

f(x)=1ηx1/η1[1+δ(1xρ/η)]1/η1[1+δ(1(1+ρ/η)xρ/η)]f(x) = \frac{1}{\eta} x^{-1/\eta-1}[1+\delta(1-x^{\rho/\eta})]^{-1/\eta-1}[1+\delta(1-(1+\rho/\eta)x^{\rho/\eta})]

for all x>1x>1 when parametrized by ρ\rho.

The control argument is a list that can supply any of the following components:

upperbound

The upperbound used in the optimize function when computing numerical quantiles, default to 1e6.

tol

the desired accuracy used in the optimize function when computing numerical quantiles, default to 1e-9.

Value

dEPD gives the density, pEPD gives the distribution function, qEPD gives the quantile function, and rEPD generates random deviates.

The length of the result is determined by n for rEPD, and is the maximum of the lengths of the numerical parameters for the other functions.

The numerical parameters other than n are recycled to the length of the result. Only the first elements of the logical parameters are used.

Author(s)

Christophe Dutang

References

J. Beirlant, E. Joossens, J. Segers (2009), Second-order refined peaks-over-threshold modelling for heavy-tailed distributions, Journal of Statistical Planning and Inference, Volume 139, Issue 8, Pages 2800-2815.

C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Insurance: Mathematics and Economics

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

Examples

#####
# (1) density function
x <- seq(0, 5, length=24)

cbind(x, dEPD(x, 1/2, 1/4, -1))

#####
# (2) distribution function

cbind(x, pEPD(x, 1/2, 1/4, -1, lower=FALSE))

The Eyraud Farlie Gumbel Morgenstern Distribution

Description

Density function, distribution function, quantile function, random generation.

Usage

dFGM(u, v, alpha, log = FALSE)
pFGM(u, v, alpha, lower.tail=TRUE, log.p = FALSE)
qFGM(p, alpha, lower.tail=TRUE, log.p = FALSE)
rFGM(n, alpha)

Arguments

u, v

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

alpha

shape parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

Details

The FGM is defined by the following distribution function

C(u,v)=uv(1+α(1u)(1v))C(u,v) = u*v*(1+\alpha*(1-u)*(1-v))

for all u,vu,v in [0,1] and α\alpha in [0,1]. When lower.tail=FALSE, pFGM returns the survival copula P(U>u,V>v)P(U > u, V > v).

Value

dFGM gives the density, pFGM gives the distribution function, qFGM gives the quantile function, and rFGM generates random deviates.

The length of the result is determined by n for rFGM, and is the maximum of the lengths of the numerical parameters for the other functions.

The numerical parameters other than n are recycled to the length of the result. Only the first elements of the logical parameters are used.

Author(s)

Christophe Dutang

References

Nelsen, R. (2006), An Introduction to Copula, Second Edition, Springer.

Examples

#####
# (1) density function
u <- v <- seq(0, 1, length=25)

cbind(u, v, dFGM(u, v, 1/2))
cbind(u, v, outer(u, v, dFGM, alpha=1/2))


#####
# (2) distribution function

cbind(u, v, pFGM(u, v, 1/2))
cbind(u, v, outer(u, v, pFGM, alpha=1/2))

Fitting a Tail Dependence model with a Robust Estimator

Description

Fit a Tail Dependence model with a Robust Estimator.

Usage

fitRTDE(obs, nbpoint, alpha, omega, method="MDPDE", fix.arg=list(rho=-1),
    boundary.method="log", control=list())


## S3 method for class 'fitRTDE'
print(x, ...)
## S3 method for class 'fitRTDE'
summary(object, ...)
## S3 method for class 'fitRTDE'
plot(x, which=1:2, main, ...)

Arguments

obs

bivariate numeric dataset.

nbpoint

a numeric for the number of largest points to be selected.

alpha

a numeric for the power divergence parameter.

omega

a numeric for omega, see section Details.

method

a character string equals to "MDPDE".

fix.arg

a named list of fixed arguments: either rhorho only e.g. list(rho=-1) or rho,deltarho, delta e.g. list(rho=-1, delta=0).

boundary.method

a character string: either "log" or "simple", see section Details.

control

A list of control paremeters. See section Details.

x, object

an R object inheriting from "fitRTDE".

...

arguments to be passed to subsequent methods.

which

an integer (1 or 2) to specify whether to plot eta or delta, respectively.

main

a main title for the plot.

Details

The function fitRTDE fits an extended Pareto distribution (η,τ\eta,\tau are fitted while ρ\rho is fixed) on the relative excess of ZωZ_\omega (see zvalueRTDE) using a robust estimator based on the minimum distance power divergence criterion (see MDPD). The boundary enforcement on η,τ\eta,\tau is either done by the bounded BFGS algorithm (see optim with method="L-BFGS-B") or by the bounded Nelder-Mead algorithm (see constrOptim with method="Nelder-Mead") .

Value

fitRTDE returns an object of class "fitRTDE" having the following components:

n

rownumber of data.

n0

rownumber of contamin.

alpha

a vector of alpha parameters.

omega

a vector of omega parameters.

m

a vector of nbpoint.

rho

a numeric for rho.

eta

estimate of etaeta.

delta

estimate of deltadelta.

Ztilde

see zvalueRTDE.

Author(s)

Christophe Dutang

References

C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

Examples

#####
# (1) simulation 

omega <- 1/2
m <- 48
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)

#function of m
system.time(
x <- fitRTDE(obs, nbpoint=m:(n-m), 0, 1/2)
)
x
summary(x)
plot(x, which=1)
plot(x, which=2)

The Frank Distribution

Description

Density function, distribution function, quantile function, random generation.

Usage

dfrank(u, v, alpha, log = FALSE)
pfrank(u, v, alpha, lower.tail=TRUE, log.p = FALSE)
qfrank(p, alpha, lower.tail=TRUE, log.p = FALSE)
rfrank(n, alpha)

Arguments

u, v

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

alpha

shape parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

Details

The Frank is defined by the following distribution function

C(u,v)=1αlog[1(1eαu)(1eαv)1eα],C(u,v) = - \frac{1}{\alpha} \log\left[1-\frac{(1-e^{-\alpha u})(1-e^{-\alpha v}) }{ 1-e^{-\alpha}}\right],

for all u,vu,v in [0,1]. When lower.tail=FALSE, pfrank returns the survival copula P(U>u,V>v)P(U > u, V > v).

Value

dfrank gives the density, pfrank gives the distribution function, qfrank gives the quantile function, and rfrank generates random deviates.

The length of the result is determined by n for rfrank, and is the maximum of the lengths of the numerical parameters for the other functions.

The numerical parameters other than n are recycled to the length of the result. Only the first elements of the logical parameters are used.

Author(s)

Christophe Dutang

References

Nelsen, R. (2006), An Introduction to Copula, Second Edition, Springer.

Examples

#####
# (1) density function
u <- v <- seq(0, 1, length=25)

cbind(u, v, dfrank(u, v, 1/2))
cbind(u, v, outer(u, v, dfrank, alpha=1/2))


#####
# (2) distribution function

cbind(u, v, pfrank(u, v, 1/2))
cbind(u, v, outer(u, v, pfrank, alpha=1/2))

The Frechet Distribution

Description

Density function, distribution function, quantile function, random generation.

Usage

dfrechet(x, shape, xmin, log = FALSE)
pfrechet(q, shape, xmin, lower.tail=TRUE, log.p = FALSE)
qfrechet(p, shape, xmin, lower.tail=TRUE, log.p = FALSE)
rfrechet(n, shape, xmin)

dufrechet(x, log = FALSE)
pufrechet(q, lower.tail=TRUE, log.p = FALSE)
qufrechet(p, lower.tail=TRUE, log.p = FALSE)
rufrechet(n)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

shape

shape parameter.

xmin

lower bound parameter.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

Details

The Frechet distribution is defined by the following density

f(x)=shape(xxmin)(shape1)exp((xxmin)(shape))f(x) = shape * (x - xmin)^{(-shape-1)} * exp(-(x - xmin)^{(-shape)})

for all x>xminx>xmin. The unit Frechet distribution corresponds to xmin=0 and shape=1.

Value

dfrechet, dufrechet give the density, pfrechet, pufrechet give the distribution function, qfrechet, qufrechet give the quantile function, and rfrechet, rufrechet generate random deviates.

The length of the result is determined by n for rfrechet, rufrechet, and is the maximum of the lengths of the numerical parameters for the other functions.

The numerical parameters other than n are recycled to the length of the result. Only the first elements of the logical parameters are used.

Author(s)

Christophe Dutang

References

Kotz, S. and Nadarajah, S. (2000), Extreme Value Distributions: Theory and Applications, Imperial College Press.

Beirlant, J., Goegebeur, Y., Teugels, J., Segers (2004), Statistics of Extremes: Theory and Applications, John Wiley and Sons.

Examples

#####
# (1) density function
x <- seq(0, 5, length=24)

cbind(x, dfrechet(x, 1/2, 1/4))

#####
# (2) distribution function

cbind(x, pfrechet(x, 1/2, 1/4))

The Minimum Distance Power Divergence statistics

Description

Computes the power divergence statistics then used a minimization problem.

Usage

MDPD(theta, densfun, obs, alpha, ..., control=list())

Arguments

theta

the parameter of the distribution given as a vector.

densfun

a function computing the theoretical density function.

obs

a numeric vector of observations

alpha

a numeric for the power divergence parameter.

...

further arguments to be passed to the density function.

control

A list of control paremeters. See section Details.

Details

The Power Divergence for a density function ff and observations X1,...,XnX_1,...,X_n is defined as

Δ(f,α)=Rf1+α(x)dx(1+1α)1ni=1nfα(Xi)\Delta(f,\alpha) = \int_{R} f^{1+\alpha}(x)dx-\left ( 1+\frac{1}{\alpha} \right ) \frac{1}{n} \sum_{i=1}^n f^\alpha(X_i)

for α>0\alpha> 0

Δ(f,0)=1ni=1nlogf(Xi)\Delta(f,0) = -\frac{1}{n}\sum_{i=1}^n \log f(X_i)

for α=0\alpha = 0.

The control argument is a list that can supply any of the following components:

eps

a small positive floating-point number used when integrate stalled, default to 1e-3.

tol

the desired accuracy used in the integrate function when computing the power divergence, default to 1e-3.

lower

the lower bound of the domain of the density function, default to 1.

upper

the lower bound of the domain of the density function, default to infinity.

Value

MDPD returns the power divergence against the density function densfun as a numeric.

Author(s)

Christophe Dutang

References

Basu, A., Harris, I.R., Hjort, N.L., Jones, M.C., (1998). Robust and efficient estimation by minimizing a density power divergence, Biometrika, 85, 549-559.

C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Insurance: Mathematics and Economics

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

Examples

#####
# (1) small example

omega <- 1/2
m <- 10
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)

#unit Pareto transform
z <- zvalueRTDE(obs, omega, nbpoint=m, output="relexcess")

MDPD(c(1/2, 1/4), dEPD, z$Z, alpha=0, rho=-1)

The QQ Pareto plot

Description

Plot the quantile-quantile Pareto plot

Usage

qqparetoplot(x, ..., highlight=c("red","cross"))

Arguments

x

data vector.

highlight

character string used in points to plot outliers.

...

further arguments for plot.default.

Details

qqparetoplot plots the quantile-quantile Pareto plot and may highlight some points having name "new".

Value

Invisible list with component x for the x-coordinates and y for the y-coordinates.

Author(s)

Christophe Dutang

Examples

#####
# (1) small examples

set.seed(1234)
x <- rupareto(100)
qqparetoplot(x)

x <- rexp(100)
qqparetoplot(x)

Data object used for a Tail Dependence model

Description

Data object used for a Tail Dependence model.

Usage

RTDE(obs=NULL, simu=list(), contamin=list(),
    nbpoint, alpha, omega, method="MDPDE", fix.arg=list(rho=-1),
    boundary.method="log", core=1, keepdata, control=list())


## S3 method for class 'RTDE'
print(x, ...)
## S3 method for class 'RTDE'
summary(object, ...)
## S3 method for class 'RTDE'
plot(x, which=1:3, FUN=mean, main, ...)

prob(object, q, ...)
## Default S3 method:
prob(object, q, ...)
## S3 method for class 'RTDE'
prob(object, q, ...)

Arguments

obs

bivariate numeric dataset.

simu

a names list with components: "nb", "marg", "cop", "replicate". When needed, "cop.par" must be provided, see dataRTDE.

contamin

a names list with components: "eps", "method", "marg", "cop". When needed, "cop.par" must be provided, see dataRTDE.

nbpoint

a numeric for the number of largest points to be selected.

alpha

a numeric for the power divergence parameter.

omega

a numeric for omega, see section Details.

method

a character string equals to "MDPDE".

fix.arg

a named list of fixed arguments: either rhorho only e.g. list(rho=-1) or rho,deltarho, delta e.g. list(rho=-1, delta=0).

boundary.method

a character string: either "log" or "simple", see section Details.

core

a numeric for the number of core to be used, only relevant for simulated data.

keepdata

a logical whether to return or not the dataset.

control

A list of control paremeters for fitRTDE.

x, object

an R object inheriting from "RTDE".

...

arguments to be passed to subsequent methods.

which

an integer to specify what to plot: 1 eta, 2 delta, 3 probability estimates.

FUN

the function to be applied, default to mean.

main

a main title for the plot.

q

vector of quantiles.

Details

The function RTDE handles (empirical or simulated) data (cf. dataRTDE) and then fits a bivariate tail model using a method criterion (cf. fitRTDE and MDPD) based on an extended Pareto distribution approximation (EPD). Typical distributions for simulated data and/or contaminations are

Marginal

Unit Pareto upareto, Frechet Frechet.

Copula

Frank Frank, FGM FGM.

For a good introduction, please refer to references.

Value

RTDE returns an object of class "RTDE" having the following components:

obs.type

see dataRTDE.

data

see dataRTDE.

fit

see fitRTDE.

simu

see dataRTDE.

contamin

see dataRTDE.

setting

a list summarizing the computation.

Author(s)

Christophe Dutang

References

C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

See Also

See fitRTDE for the fitting process and dataRTDE for the data-handling process.

Examples

#####
# (1) simulation

n <- 100
x <- RTDE(simu=list(nb=n, marg="ufrechet", cop="indep", replicate=1),
	nbpoint=10:11, alpha=0, omega=1/2)
x	
summary(x)

The unit Pareto Distribution

Description

Density function, distribution function, quantile function, random generation.

Usage

dupareto(x, log = FALSE)
pupareto(q, lower.tail=TRUE, log.p = FALSE)
qupareto(p, lower.tail=TRUE, log.p = FALSE)
rupareto(n)

Arguments

x, q

vector of quantiles.

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[Xx]P[X \le x], otherwise, P[X>x]P[X > x].

Details

The extended Pareto distribution is defined by the following density and distribution function

f(x)=1x2,F(x)=11x,f(x) = \frac{1}{x^2}, F(x) = 1-\frac{1}{x},

for all x>0x>0.

Value

dupareto gives the density, pupareto gives the distribution function, qupareto gives the quantile function, and rupareto generates random deviates.

The length of the result is determined by n for rupareto, and is the maximum of the lengths of the numerical parameters for the other functions.

The numerical parameters other than n are recycled to the length of the result. Only the first elements of the logical parameters are used.

Author(s)

Christophe Dutang

References

Johnson, N.L., Kotz, S. and Balakrishnan, N. (2000), Continuous Univariate Distributions, Volume 1, Second Edition, John Wiley and Sons.

Examples

#####
# (1) density function
x <- seq(0, 5, length=24)

cbind(x, dupareto(x))

#####
# (2) distribution function

cbind(x, pupareto(x))

The Z-value random variable

Description

Compute the Z-value variable from a bivariate dataset.

Usage

zvalueRTDE(obs, omega, nbpoint, output=c("orig", "relexcess"), 
    marg=c("upareto", "ufrechet", "uunif"))

## S3 method for class 'zvalueRTDE'
print(x, ...)
## S3 method for class 'zvalueRTDE'
summary(object, ...)


relexcess(x, nbpoint, ...)
## Default S3 method:
relexcess(x, nbpoint, ...)
## S3 method for class 'zvalueRTDE'
relexcess(x, nbpoint, ...)

Arguments

obs

bivariate numeric dataset.

omega

a numeric for omega, see Details.

nbpoint

a numeric for the number of largest points to be selected.

output

a character string for the output: either "orig" for original value or "relexcess" for relative excess.

marg

a character string for the empirical margin transformation: either "upareto" for unit Pareto, "ufrechet" for unit Frechet or "uunif" for unit uniform margin.

x, object

an R object inheriting from "zvalueRTDE".

...

arguments to be passed to subsequent methods.

Details

Given a bivariate dataset (Xi,Yi)i(X_i, Y_i)_i of nn points, two variables are defined: (1) for output="orig", the Z~ω,i\tilde Z_{\omega,i} variable

Z~ω,i=min(f(RiXn+1),ω1ωf(RiYn+1))\tilde Z_{\omega,i} = \min \left( f\left(\frac{R_i^X}{n+1}\right), \frac{\omega}{1-\omega} f\left(\frac{R_i^Y}{n+1}\right) \right)

where f(x)f(x) is the margin transformation and i=1,...,ni=1,...,n; (2) for output="relexcess", the ZjZ_{j} variable

Z~ω,nm+j,nZ~ω,nm,n\frac{\widetilde Z_{\omega,n-m+j,n}}{\widetilde Z_{\omega,n-m,n}}

where mm equals nbpoint, j=1,,mj=1,\dots, m, and Z~ω,1,n,...,Z~ω,n,n\widetilde Z_{\omega,1,n},..., \widetilde Z_{\omega,n,n} are the order statistics of Z~ω,1,...,Z~ω,n\widetilde Z_{\omega,1},...,\widetilde Z_{\omega,n}. The margin transformation is

f(x)=11x,f(x)=1log(x),f(x)=x,f(x) = \frac{1}{1-x}, f(x) = \frac{1}{-\log(x)}, f(x) = x,

respectively for unit Pareto (marg="upareto"), unit Frechet (marg="ufrechet") and unit uniform margin (marg="uunif").

Value

zvalueRTDE computes the Z-variable and returns an object of class "zvalueRTDE" having the following components type (either "orig" or "relexcess"), omega, Ztilde or Z, n, possibly m.

relexcess computes the relative excesses from a Z-variable and returns an object of class "zvalueRTDE" of type "relexcess".

Author(s)

Christophe Dutang

References

C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics

This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).

See Also

See fitRTDE for the fitting process and dataRTDE for the data-handling process.

Examples

#####
# (1) example

omega <- 1/2
m <- 10
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)

#unit Pareto transform
zvalueRTDE(obs, omega, output="orig")

relexcess(zvalueRTDE(obs, omega, output="orig"), m)
zvalueRTDE(obs, omega, nbpoint=m, output="relexcess")