Package: OneStep 0.9.4

OneStep: One-Step Estimation

Provide principally an eponymic function that numerically computes the Le Cam's one-step estimator for an independent and identically distributed sample. One-step estimation is asymptotically efficient (see L. Le Cam (1956) <https://projecteuclid.org/euclid.bsmsp/1200501652>) and can be computed faster than the maximum likelihood estimator for large observation samples, see e.g. Brouste et al. (2021) <doi:10.32614/RJ-2021-044>.

Authors:Alexandre Brouste [aut], Christophe Dutang [aut, cre], Darel Noutsa Mieniedou [ctb]

OneStep_0.9.4.tar.gz
OneStep_0.9.4.zip(r-4.5)OneStep_0.9.4.zip(r-4.4)OneStep_0.9.4.zip(r-4.3)
OneStep_0.9.4.tgz(r-4.4-any)OneStep_0.9.4.tgz(r-4.3-any)
OneStep_0.9.4.tar.gz(r-4.5-noble)OneStep_0.9.4.tar.gz(r-4.4-noble)
OneStep_0.9.4.tgz(r-4.4-emscripten)OneStep_0.9.4.tgz(r-4.3-emscripten)
OneStep.pdf |OneStep.html
OneStep/json (API)
NEWS

# Install 'OneStep' in R:
install.packages('OneStep', repos = c('https://dutangc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.48 score 2 stars 15 scripts 406 downloads 22 mentions 3 exports 9 dependencies

Last updated 1 months agofrom:42fd01175d. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-winOKNov 17 2024
R-4.5-linuxOKNov 17 2024
R-4.4-winOKNov 17 2024
R-4.4-macOKNov 17 2024
R-4.3-winOKNov 17 2024
R-4.3-macOKNov 17 2024

Exports:benchonestepbenchonestep.replicateonestep

Dependencies:extraDistrfitdistrpluslatticeMASSMatrixnumDerivRcpprlangsurvival